Cellular Uptake and Antitumor Activity of DOX-hyd-PEG-FA Nanoparticles
نویسندگان
چکیده
A PEG-based, folate mediated, active tumor targeting drug delivery system using DOX-hyd-PEG-FA nanoparticles (NPs) were prepared. DOX-hyd-PEG-FA NPs showed a significantly faster DOX release in pH 5.0 medium than in pH 7.4 medium. Compared with DOX-hyd-PEG NPs, DOX-hyd-PEG-FA NPs increased the intracellular accumulation of DOX and showed a DOX translocation from lysosomes to nucleus. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was much higher than that of free DOX, DOX-ami-PEG-FA NPs and DOX-hyd-PEG NPs. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was attenuated in the presence of exogenous folic acid. The IC50 of DOX-hyd-PEG-FA NPs and DOX-hyd-PEG NPs on A549 cells showed no significant difference. After DOX-hyd-PEG-FA NPs were intravenously administered, the amount of DOX distributed in tumor tissue was significantly increased, while the amount of DOX distributed in heart was greatly decreased as compared with free DOX. Compared with free DOX, NPs yielded improved survival rate, prolonged life span, delayed tumor growth and reduced the cardiotoxicity in tumor bearing mice model. These results indicated that the acid sensitivity, passive and active tumor targeting abilities were likely to act synergistically to enhance the drug delivery efficiency of DOX-hyd-PEG-FA NPs. Therefore, DOX-hyd-PEG-FA NPs are a promising drug delivery system for targeted cancer therapy.
منابع مشابه
In Vitro and In Vivo Antitumor Activity of a Novel pH-Activated Polymeric Drug Delivery System for Doxorubicin
BACKGROUND Conventional chemotherapy agent such as doxorubicin (DOX) is of limited clinical use because of its inherently low selectivity, which can lead to systemic toxicity in normal healthy tissue. METHODS A pH stimuli-sensitive conjugate based on polyethylene glycol (PEG) with covalently attachment doxorubicin via hydrazone bond (PEG-hyd-DOX) was prepared for tumor targeting delivery syst...
متن کاملDual subcellular compartment delivery of doxorubicin to overcome drug resistant and enhance antitumor activity
In order to overcome drug resistant and enhance antitumor activity of DOX, a new pH-sensitive micelle (DOX/DQA-DOX@DSPE-hyd-PEG-AA) was prepared to simultaneously deliver DOX to nucleus and mitochondria. Drug released from DOX/DQA-DOX@DSPE-hyd-PEG-AA showed a pH-dependent manner. DOX/DQA-DOX@DSPE-hyd-PEG-AA induced the depolarization of mitochondria and apoptosis in MDA-MB-231/ADR cells and A54...
متن کاملAntitumor activity of a folate receptor-targeted immunoglobulin G-doxorubicin conjugate
Development of antibody-drug conjugates (ADCs) is a promising therapeutic strategy for cancer therapy. In this study, folate was conjugated via a polyethyleneglycol (PEG) linker to immunoglobulin G (IgG), which was linked to doxorubicin (DOX), to form a novel ADC folate-PEG-IgG-DOX (FA-PEG-IgG-DOX). The FA-PEG-IgG-DOX showed high targeting efficiency in HeLa and KB cells and significantly impro...
متن کاملpH-triggered intracellular release from actively targeting polymer micelles.
Chemotherapy is widely applied to treat cancer patients but its application is limited due to the systemic toxicity and low efficacy. Nanocarrier system, which is capable of delivering their toxic cargos specifically into cancer cells and then greatly overcomes these disadvantages, has drawn a broad attention. Here we developed a drug-conjugated micelle for a better drug delivery in which folic...
متن کاملEvaluation of the effect of crocetin on antitumor activity of doxorubicin encapsulated in PLGA nanoparticles
Objective(s): The current study reports investigation of codelivery by PLGA nanoparticles (NPs) loaded with crocetin (Cro), a natural carotenoid dicarboxylic acid that is found in the crocus flower, and Doxorubicin (DOX). Materials and Methods: Double emulsion/solvent evaporation method was used for preparation of PLGA nanoparticles containing Dox and Cro. Characterizations of prepared NPs were...
متن کامل